The Gaussian free field and strict plane partitions
نویسندگان
چکیده
We study height fluctuations around the limit shape of a measure on strict plane partitions. It was shown in our earlier work that this measure is a Pfaffian process. We show that the height fluctuations converge to a pullback of the Green’s function for the Laplace operator with Dirichlet boundary conditions on the first quadrant. We use a Pfaffian formula for higher moments to show that the height fluctuations are governed by the Gaussian free field. The results follow from the correlation kernel asymptotics which is obtained by the steepest descent method. Résumé. Nous étudions les fluctuations de la hauteur autour de la forme limite d’une mesure sur les partitions planes strictes. Nous avons déjà montré que cette mesure est un processus Pfaffien. Nous montrons que les fluctuations convergent vers un “pullback” de la fonction de Green pour l’opérateur de Laplace avec des conditions de bord de Dirichlet sur le premier quadrant. Nous utilisons une formule Pfaffienne pour les moments d’ordre supérieur pour montrer que les fluctuations sont gouvernées par le champ libre gaussien. Ces résultats découlent de l’asymptotique du noyau de corrélation qui est obtenue par la méthode du col.
منابع مشابه
On Free Fermions and Plane Partitions
We use free fermion methods to re-derive a result of Okounkov and Reshetikhin relating charged fermions to random plane partitions, and to extend it to relate neutral fermions to strict plane partitions.
متن کاملA Generalization of Macmahon’s Formula
We generalize the generating formula for plane partitions known as MacMahon’s formula as well as its analog for strict plane partitions. We give a 2-parameter generalization of these formulas related to Macdonald’s symmetric functions. The formula is especially simple in the Hall-Littlewood case. We also give a bijective proof of the analog of MacMahon’s formula for strict plane partitions.
متن کاملShifted Schur Process and Asymptotics of Large Random Strict Plane Partitions
In this paper we define the shifted Schur process as a measure on sequences of strict partitions. This process is a generalization of the shifted Schur measure introduced in [TW] and [Mat] and is a shifted version of the Schur process introduced in [OR1]. We prove that the shifted Schur process defines a Pfaffian point process. We further apply this fact to compute the bulk scaling limit of the...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملBivariate Asymptotics for Striped Plane Partitions
We give a new asymptotic formula for a refined enumeration of plane partitions. Specifically: color the parts πi,j of a plane partition π according to the equivalence class of i−j (mod 2), and keep track of the sums of the 0-colored and 1-colored parts seperately. We find, for large plane partitions, that the difference between these two sums is asymptotically Gaussian (and we compute the mean ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013